ATMOSPHERIC CHEMISTRY OF ALKANES

Roger Atkinson and Janet Arey, Co-Principal Investigators

Sara M. Aschmann

Eric S. C. Kwok

ATMOSPHERIC CHEMISTRY OF SELECTED LINEAR, BRANCHED AND CYCLIC C_{10} ALKANE COMPONENTS OF MINERAL SPIRITS

California Air Resources Board Contract No. 97-312

August 9, 2002

- Alkanes are important components of gasoline
 (comprising ~60% of gasoline) and vehicle exhaust, and account for ~40% of non-methane organic compounds in urban atmospheres.
- C₉-C₁₃ alkanes are important constituents of mineral spirits.

In the atmosphere, alkanes react with:

- OH radicals during daylight hours.
- NO₃ radicals during nighttime hours.
- Cl atoms in coastal areas.

Reaction with OH radicals is estimated to dominate over reaction with NO₃ radicals, by a factor of ~100.

Alkane	Lifetime
Ethane	50 days
Propane	10 days
<i>n</i> -Butane	5 days
<i>n</i> -Decane	1 day

Alkanes react by H-atom abstraction from the various C-H bonds:

As of approximately 1995, the only products identified (and quantified) were carbonyl compounds arising from alkoxy radical decomposition and reaction with O_2 :

	yield (%)		
carbonyls	alkyl nitrates		
89	7.7		
47	10.5		
10	21		
≤1	31		
≤1	33		
	carbonyls 89 47 10 ≤1		

Hydroxycarbonyls have since been observed by:

- Eberhard *et al.* (1995) from *n*-hexane, derivatizing the carbonyl group with DNPH and analysis by GC-MS.
- Atkinson et al. (1995) from n-pentane, and Kwok et al.
 (1996) from n-butane through n-octane, using in situ
 API-MS

PROJECT GOALS

The goal of this contract was to investigate the atmospheric chemistry (lifetime and products) of three C_{10} alkanes which were representative of those in mineral spirits.

The first part of the project involved development of analytical methods to identify and quantify hydroxycarbonyls and hydroxynitrates from *n*-pentane through *n*-octane, as well as a re-determination of the alkyl nitrate formation yields from these *n*-alkanes.

EXPERIMENTAL APPROACH

- Experiments were carried out in ~7000 liter Teflon
 chambers, with blacklight irradiation, in purified air at
 ~5% relative humidity.
- OH radicals were generated by photolysis of methyl nitrite in air:

$$CH_3ONO + h\nu \rightarrow CH_3O^{\bullet} + NO$$

 $CH_3O^{\bullet} + O_2 \rightarrow HCHO + HO_2$
 $HO_2 + NO \rightarrow OH + NO_2$

• Analyses were by GC-FID (solid adsorbent/thermal desorption) or by API-MS.

Initial concentrations (molecule cm⁻³) were CH₃ONO and NO, equal at $(0.24-24) \times 10^{13} (0.1-10 \text{ ppm})$ Alkane, $(0.24-2.4) \times 10^{13} (0.1-1 \text{ ppm})$

APRC PE SCIEX API III MS/MS

C₅-C₈ *n*-alkanes

- Measurement of alkyl nitrate yields (*e.g.*, 2-and 3-pentyl nitrates from *n*-pentane) using GC-FID analyses.
- Identification and quantification of hydroxycarbonyls and hydroxynitrates (*e.g.*, hydroxypentanones and hydroxypentyl nitrates from *n*-pentane) using API-MS and API-MS/MS analyses.

API-MS analyses

Previously [Atkinson et al. (1995) and Kwok et al.
(1996)] we had used the API-MS in positive ion mode,
with protonated water clusters as the reagent ion:

$$H_3O^+(H_2O)_n + M \rightarrow [M+H]^+ + (n+1)H_2O$$

• In this study, we investigated the use of O₂, NO₂, $[PFBOH • O_2]^{\top} \text{ and } [PFBOH • NO_2]^{\top} \text{ as the reagent ions,}$ where PFBOH = C₆F₅CH₂OH, resulting in the formation of adduct ions:

 $[PFBOH \bullet NO_2]^{-} + M \rightarrow [PFBOH \bullet NO_2 \bullet M]^{-}$ etc.

Alkyl nitrate yields

	Formation yield (%)		
Alkane	2-nitate	3-nitrate	4-nitrate
<i>n</i> -pentane	6.0 ± 1.0	4.4 ± 0.6	
<i>n</i> -hexane	5.9 ± 0.7	8.2 ± 1.0	
<i>n</i> -heptane	5.9 ± 0.6	8.3 ± 0.9	3.6 ± 0.5
<i>n</i> -octane	6.2 ± 0.6	8.1 ± 0.8	8.3 ± 1.2

	Total alkyl nitrate yield (%)		
Alkane	previous work	this work	
ethane	≤1.4		
propane	3.6 ± 0.5		
<i>n</i> -butane	7.7 ± 0.5		
<i>n</i> -pentane	11.7 ± 1.3	10.5 ± 1.4	
<i>n</i> -hexane	20.8 ± 2.7	14.1 ± 2.0	
<i>n</i> -heptane	29.3 ± 4.2	17.8 ± 2.4	
<i>n</i> -octane	31.8 ± 2.7	22.6 ± 3.2	

API-MS analyses

- Our previous 1995 and 1996 studies used the positive ion mode, with protonated water clusters as the reagent ion.
- The C_n-hydroxycarbonyls from the C_n-alkane were observed, as the [M+H]⁺, [M-H]⁺ and [M+H-H₂O]⁺ ions.
- Because of fragmentation and homo- and hetero-dimer formation, quantification of hydroxycarbonyls did not appear possible.
- Hydroxynitrates were not observed.
- Therefore, in this study we used the negative ion mode, initially using [PFBOH•O₂] to form adduct ions.

API-MS spectrum of OH + *n*-hexane reaction, with addition of PFBOH to the sampled air stream

- Clearly, there are [PFBOH•NO₂] and [PFBOH•O₂•NO] present as well as [PFBOH•O₂], and these also form adducts with products.
- The presence of [PFBOH•O₂•M] ions was determined from API-MS/MS "precursor ion" spectra of the 230 u [PFBOH•O₂] ion, and confirmed from API-MS/MS "fragment ion" spectra of the [PFBOH•O₂•M] ions.

OH + n-hexane: API-MS/MS precursor ion spectrum of the 230 u [PFBOH.O₂] ion

Products M observed from the presence of [PFBOH•O₂•M] ions. -OD groups rapidly undergo -OD to -OH exchange:

CH₃C(O)CH₂CH₂CH₂OH and CD₃C(O)CD₂CD₂CD₂OH

	Molecular weight of product M		
Alkane	alkane-h _{2n+2}	alkane-d _{2n+2}	
<i>n</i> -pentane	102	111	
	149	159	
<i>n</i> -hexane	116	127	
	163	175	
<i>n</i> -heptane	130	143	
	177	191	
<i>n</i> -octane	144	159	
	191	207	

- While this was fine for observation of hydroxycarbonyls and hydroxynitrates, NO₂ concentrations increased during the CH₃ONO NO alkane air irradiations and [PFBOH•NO₂] competed with [PFBOH•O₂] for adduct formation, making quantification very difficult.
- We finally concluded that quantification of hydroxycarbonyls and hydroxynitrates as their NO₂ adducts was the best strategy, and with NO₂ concentrations ~2.4 x 10¹³ molecule cm⁻³ (1 ppm) to ensure that [NO₂•M] dominated over [O₂•M].

 NO_2^- adducts, OH radical-initiated reaction of n-pentane, n-hexane, n-heptane and n-octane

- A series of OH + C_5 - C_8 n-alkane reactions were carried out with differing relative initial alkane concentrations, resulting in relative formation yields of hydroxycarbonyls and of hydroxynitrates.
- For individual OH + *n*-alkane reactions, internal standards were added/formed in the chamber: 5-hydroxy-2-pentanone was added after the reactions for hydroxycarbonyl quantification, and CH₃CH(OH)CH(ONO₂)CH₃ was formed *in situ* from OH + *cis*-2-butene (3.5% yield) for quantification of hydroxynitrates.

Hydroxycarbonyl yields

	<i>n</i> -pentane	<i>n</i> -hexane	<i>n</i> -heptane	<i>n</i> -octane
Relative	1.33 ± 0.67	1.97 ± 0.61	1.69 ± 0.29	1.00
vs standard	60%	49%	29%	24%
Yield	36%	53%	46%	27%

Hydroxynitrate yields

	<i>n</i> -pentane	<i>n</i> -hexane	<i>n</i> -heptane	<i>n</i> -octane
Relative	0.48 ± 0.12	0.85 ± 0.20	0.87 ± 0.05	1.00
vs standard	2.4%	4.6%	4.8%	5.6%
Yield	2.6%	4.6%	4.7%	5.4%

Product yields (%)

	<i>n</i> -pentane	<i>n</i> -hexane	<i>n</i> -heptane	<i>n</i> -octane
Carbonyls	47	10	≤1	≤1
Nitrates	10.5	14.1	17.8	22.6
Hydroxycarbonyls	36	53	46	27
Hydroxynitrates	2.6	4.6	4.7	5.4
Total	96 +40 -20	82 +55 -30	69 +50 -25	55 +30 -15

If alkoxy radical isomerization can occur, then for the *n*-alkanes isomerization dominates (at room temperature) and formation of hydroxycarbonyls dominates (and products are alkyl nitrates, hydroxycarbonyls and hydroxynitrates).

C₁₀ Alkanes

- Rate constants for their reaction with OH radicals were measured using a relative rate method.
- Carbonyl and alkyl nitrate products were analyzed by GC-FID and confirmed by GC-MS.
- Hydroxycarbonyls and hydroxynitrates were identified and quantified by API-MS in negative ion mode using NO₂ to form adducts, with internal standards.
- API-MS analyses also used the positive ion mode, with protonated water clusters as the reagent ion.

OH + C₁₀ alkane -> products (1)

OH + n-octane -> products (2)

 $ln([C_{10}]_{to}/[C_{10}]_{t}) = (k_1/k_2) ln([n-octane]_{to}/[n-octane]_{t})$

Room temperature rate constants and lifetimes for the reactions of C_{10} -alkanes with OH radicals

	$10^{12} \text{ x k}_1 \text{ (cm}^3$	lifetime	
alkane	this work	literature	(days)
<i>n</i> -decane	12.5 ± 0.4	11.1 ± 0.5^{a}	0.9
		11.1 ± 0.4^{b}	
		$12.4 \pm 0.2^{\circ}$	
3,4-diethylhexane	7.43 ± 0.48		1.6
<i>n</i> -butylcylohexane	15.8 ± 0.6		0.7

^aAtkinson et al. (1982).

^bNolting *et al.* (1988).

^eBehnke *et al.* (1988).

n-Decane

- GC analyses showed the presence of 2-, 3-, 4- and 5-decyl nitrate. No other products were observed by GC analyses.
- API-MS analyses in positive ion mode showed the presence of products of MW 172 (C₁₀-hydroxycarbonyls), 203 (decyl nitrates) and 219 (hydroxydecyl nitrates).
- API-MS analyses with NO₂ showed the presence of products of MW 172 (C₁₀-hydroxycarbonyls) and 219 (hydroxydecyl nitrates).

API-MS positive ion spectrum of OH radical-initiated reaction of *n*-decane

Products observed and their yields (%):

product	GC-FID	API-MS
decyl nitrates	22.6 ± 3.8	obs
hydroxycarbonyls		obs, 22%
hydroxynitrates		obs, 2.4%

OH + 3,4-Diethylhexane and n-Butylcyclohexane

GC analyses showed C_{10} alkyl nitrates from both alkanes, plus:

- Acetaldehyde, propanal, 3-pentanone and 3-pentyl nitrate from 3,4-diethylhexane.
- Propanal, butanal and cyclohexanone from *n*-butylcyclohexane.

API-MS analyses also showed presence of hydroxycarbonyls and hydroxynitrates.

10⁻¹² x [3,4-Diethylhexane] reacted, molecule cm⁻³

API-MS analyses, positive ion mode

3,4-Diethylhexane

Product	GC-FID	API-MS
acetaldehyde	40%	
propanal	37 ± 6%	obs
3-pentanone	40 ± 4%	obs
3-pentyl nitrate	$2.3 \pm 1.1\%$	
C ₁₀ -nitrates	$17.7 \pm 3.2\%$	
hydroxycarbonyls		obs, 11%
hydroxynitrates		obs, 1.7%

n-Butylcyclohexane

Product	GC-FID	API-MS
propanal	≤5%	
butanal	$7.2 \pm 0.9\%$	obs
cyclohexanone	$4.9 \pm 0.7\%$	obs
C ₁₀ -nitrates	19 ± 6%	
hydroxycarbonyls		obs, 37%
hydroxynitrates		obs, 2.3%

Product formation yields from reactions of the OH radical with a series of C_5 - C_{10} alkanes studied in our laboratory, in the presence of NO.

	Yield (%) of gas-phase products				
alkane	Carbonyls	Alkyl nitrates	Hydroxycarbonyls	Hydroxynitrates	
<i>n</i> -pentane	47	10.5	36	2.6	
<i>n</i> -hexane	10	14.1	53	4.6	
<i>n</i> -heptane	≤1	17.8	46	4.7	
<i>n</i> -octane	≤1	22.6	27	5.4	
<i>n</i> -decane		22.6	22	2.4	
2,2,4-trimethylpentane	40		11		
3,4-diethylhexane	~40	18	11	1.7	
<i>n</i> -butylcyclohexane	7	19	37	2.3	

CONCLUSIONS

If alkoxy radical isomerization can occur, then hydroxycarbonyls and hydroxynitrates will be formed. This is the case for n -alkanes larger than n- hexane.

For branched alkoxy radicals, isomerization may not be feasible or may be slower than decomposition, in which case smaller carbonyls are formed.

The "first-generation" products of the atmospheric reactions of alkanes are:

- Carbonyls
- Hydroxycarbonyls
- Alkyl nitrates
- Hydroxyalkyl nitrates

with 1,4-hydroxycarbonyls being formed in high yield in many cases. The only commercially available 1,4-hydroxycarbonyl is:

5-hydroxy-2-pentanone CH₃C(O)CH₂CH₂CH₂OH

We have studied its reactions using primarily *in situ* FT-IR spectroscopy.

In dry air (<1% RH), 5-hydroxy-2-pentanone was observed to decay with a lifetime of 1.1 hr and forming 4,5-dihydro-2-methylfuran.

$$\mathsf{CH}_3\mathsf{C}(\mathsf{O})\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} - \mathsf{CH}_3$$

$$\mathsf{CH}_3$$

$$\mathsf{CH}_3$$

$$\mathsf{CH}_3$$

$$\mathsf{CH}_3$$

Therefore, we have investigated the atmospheric chemistry of 4,5-dihydro-2-methylfuran.

Rate constants and calculated lifetimes for the reactions of 4,5-dihydro-2-methylfuran with OH radicals, NO_3 radicals, and O_3 at 298 ± 1 K.

Reaction and		k_1	
reference compound	k_1/k_2	(cm ³ molecule ⁻¹ s ⁻¹)	Lifetime ^a
OH Reaction			
Cyclohexene	3.22 ± 0.32	$(2.18 \pm 0.31) \times 10^{-10}$	
2-Methylpropene	4.24 ± 0.22	$(2.17 \pm 0.24) \times 10^{-10}$	
		$(2.18 \pm 0.20) \times 10^{-10}$	1.3 hr
NO ₃ Reaction			
2,3-Dimethyl-2-	2.94 ± 0.20	$(1.68 \pm 0.52) \times 10^{-10}$	24 s
butene			
O ₃ Reaction			
2,3-Dimethyl-2-	3.09 ± 0.21	$(3.49 \pm 0.90) \times 10^{-15}$	7 min
butene			

^aCalculated using 24-hour average tropospheric concentrations (molecule cm⁻³) of: OH radicals, 1.0×10^6 ; NO₃ radicals, 2.5×10^8 ; and O₃, 7.4×10^{11} .

Analyses of irradiated CH₃ONO – DMHF – air and (CH₃)₂CHONO – DHMF – air mixtures, using *in situ* FT-IR and API-MS analyses and GC-MS analyses, indicated the formation of an ester of molecular weight 116.

This is attributed to CH₃C(O)OCH₂CH₂CHO

Based on measured IR absorption cross-sections of a series of esters, CH₃C(O)OCH₂CH₂CHO was quantified by FT-IR.

Products and their yields (corrected for secondary reaction) from OH + 4,5-dihydro-2-methylfuran.

Product	Molar yield (%)
CH ₃ C(O)OCH ₂ CH ₂ CHO	74 ± 19
НСНО	5.4 to12
CH ₂ =CH ₂	3.4 to 4.8
$RC(O)OONO_2$	Secondary product

HOWEVER:

In contrast to the dry (<<1% RH) system, in situ FT-IR analyses in the presence of water vapor (4.0×10^{16} molecule cm⁻³; 5% RH) showed decay of 4,5-dihydro-2-methylfuran, with a lifetime of 3.5 hr and formation of 5-hydroxy-2-pentanone in \sim 90% yield.

Therefore:

$$\mathsf{CH_3C}(\mathsf{O})\mathsf{CH_2CH_2CH_2OH} \qquad \qquad \mathsf{CH_3} \qquad \mathsf{CH_3} \qquad \mathsf{CH_3} \qquad \mathsf{CH_3}$$

and the situation becomes more complex and involves the interconversion of 5-hydroxy-2-pentanone and 4,5-dihydro-2-methylfuran and concurrent reactions of both species.

Note that 5-hydroxy-2-pentanone is expected to be less reactive than 4,5-dihydro-2-methylfuran, by a factor of ~ 10 for the OH radical reaction, by a factor of $\sim 10^5$ for the NO₃ radical reaction, and with no reaction with O₃ expected.

Related ongoing research at APRC

- We have shown that hydroxycarbonyls can be analyzed using a Solid Phase Micro-Extraction (SPME) fiber coated with pentafluorobenzylhydroxylamine hydrochloride, with *in situ* derivatization of carbonyl groups to form the oximes which are then analyzed by GC-FID and/or GC-MS.
- We have used this technique to observe 5-hydroxy-2-pentanone from the *n*-pentane reaction, 2 hydroxycarbonyls from the *n*-hexane reaction, and 3 from each of the *n*-heptane and *n*-octane reactions.
- We are using this technique to determine a rate constant for OH + 5-hydroxy-2-pentanone.